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Renewable fuels and chemicals 

from municipal solid waste 



Courtesy of Paul Bryan 

Reliance of imported energy represents  

a significant cost and energy supply risk 
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MSW can be used to supplement products from 

crude oil 
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Municipal solid waste Crude oil 
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SUSTAINABLE  

TECHNOLOGIES 

+ Biofuels & Chemicals 
+ Polymers 
+ Nanomaterials 

+ Catalytic mat’l 
  + Novel adsorbents 
    + Advanced  
       characterization 

Sustainable 
Resources 

https://claytonheightscareers.files.wordpress.com/2014/01/plant-no-background.png 
http://imagicialotv.deviantart.com/art/Impossible-Triangle-442428891 
https://en.wikipedia.org/wiki/Methane#/media/File:Methane-CRC-MW-3D-balls.png 

We look at reesources, processes, and economics 

to find solutions 
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1st generation biofuels are derived  

from food crops 

http://blog.mslgroup.com/wp-content/uploads/2012/11/r2.png 
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1st generation biofuels from food crops  

drive up the food price 

Utilization of Corn Milling Co-Products in Beef Cattle.” Nebraska Corn Board & UNL-IANR, Erickson, et al., August 2007 

PRO 
Easy to be converted 

 

CON 
Competitive to food price 
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2nd generation biofuels from non-food crops  

are more sustainable and scalable 

PRO 
Low cost 

Low carbon 

Scalable 

Sustainable 

 

CON 
Complex structure 

Hard to digest by 

enzymes\microbes 

http://blog.mslgroup.com/wp-content/uploads/2012/11/r2.png 



Reaction conditions: 
30 mg protein/g glucan, 72 h 
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Corn stock, husk, and leaves are hard for  

enzymes to digest and normally left unused 

Sathitsuksanoh et al. JCTB, (2013) 88: 169 14 
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DOE 2016 billion ton study shows that agricultural 

waste alone cannot meet the fuel demand 

Sathitsuksanoh et al. JCTB, (2013) 88: 169 16 

MSW 
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In 2013, ~70 million tons of paper wastes were 

generated. They derived from plants 

U.S. Environmental Protection Agency (EPA) (2015) Advancing Sustainable Materials Management: 2013 Fact Sheet  
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http://buywastepaper.com/waste-paper-facts/ 
http://energy.agwired.com/wp-content/uploads/sites/11/2010/05/CornWaste.jpg?811cbd 

The blend of agricultural waste and paper waste 

have a great potential to fuel the U.S. 

Agricultural waste  

Paper waste  

Transportation fuels 

UPGRADING   



Outline 
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Plant-based 
waste 

Sugars Fuels 



Outline 
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Plant-based 
waste 

Tire waste 

Sugars 

Aromatics 

Fuels 



MSW + Corn stover (1:1)  

Pretreatment 
process 

Precipitation 
tank 

Anti-solvents 

Step 1: Pretreatment 

Settling       
tank 

Decanter                 Sugars 

Unlocking sugars from biomass involves 2 steps: 

pretreatment and enzymatic hydrolysis 
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Step 2: 

Enzymatic 
hydrolysis 

Sun, Xu, Sathitsuksanoh et al. (2015) Bioresource Technol. 
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Crystalline  
Region 

Amorphous 
Region 

Cellulose 
Lignin 

Hemicellulose 

Paper waste is derived from plant. Complex 

structure makes it difficult to release sugars 

 

Mosier et al (2007) Biores. Technol. 
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Crystalline  
Region 

Amorphous 
Region 

Cellulose 
Lignin 

Hemicellulose 

Cellulose 
solvent 

Cellulose solvent process breaks tough barrier and 

unlock sugars 

 

Sathitsuksanoh et al. JCTB, (2013) 88: 169. 
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15% NH3, 24 h, 60 oC 

100% BMIM[Cl],  
30 min, 105 oC 

85% H3PO4, 30 min, 50 oC 

DA 

SAA 

COSLIF 

IL 

0.5 % H2SO4, 20 min, 160 oC 

Sathitsuksanoh et al (2012) Cellulose, 19:1161  Zhu, Sathitsuksanoh  et al. (2009) Biotechnol. Bioeng. 103: 715,  
Rollin, Sathitsuksanoh et al. (2011) Biotechnol. Bioeng. 108: 22 

MSW + CS 

Effect of pretreatments on MSW structures 
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15% NH3, 24 h, 60 oC 

100% BMIM[Cl],  
30 min, 105 oC 

85% H3PO4, 30 min, 50 oC 

0.5 % H2SO4, 20 min, 160 oC 

Sathitsuksanoh et al (2012) Cellulose, 19:1161  Zhu, Sathitsuksanoh  et al. (2009) Biotechnol. Bioeng. 103: 715,  
Rollin, Sathitsuksanoh et al. (2011) Biotechnol. Bioeng. 108: 22 

MSW + CS 

Effect of pretreatments on lignocellulose structures 

DA 

SAA 

COSLIF 

IL 
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Hydrolysis conditions: Feed = 10% 
substrate, Cat .= 15 mg protein/g 
glucan,  T = 50 C, pH 4.8 , time = 

24 h.  

Biomass dissolution can enhance  

cellulose conversion 

[C2C1mim][OAc] 

85% H3PO4 

15% NH4OH 

15% NH4OH + P 

0.5% H2SO4 

0 20 40 60 80 100

Ionic liq.

COSLIF

SAA

AFEX

Dilute acid

Corn stover

Cellulose conversion (%) 

MSW + CS 



Heterogeneity nature of paper makes it difficult  

to be dissolved and therefore hard to catalyze 

Switchgrass~200  µm 
27 



Fuel 

Glucose Cellulose Arabinose 

Hemicellulose 

Xylose 

have many good 
genetic tools 

consume all 
biomass sugars 

produce drop-in fuels 
efficiently convert 

sugar into fuels 
tolerate fuels and 

biomass hydrolysates 
28 

The ideal biofuel-producing microorganism 

would…… 



Appl. Environ. Microbiol.  (2014) doi: 10.1128/AEM.02795-14,  
Metab. Eng. (2013) 79 (14): 4433, Green Chem (2013) 15: 1264 

HSQC can be applied in fermentation; it reveals 

how efficient substrate-microbe interaction is 

Glucose 
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before after 

Ionic liquid 

Untreated switchgrass 

before after 

Collaborators: 

• Jana Muller (Calysta Energy) 

• Harry Beller (Physical BioSceinces) 

• Jay Keasling (UC Berkeley) 



Summary 
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Plant-based 
waste 

Sugars Diesel 



Outline 
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Tire waste 

Aromatics 

Fuels 
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Tires are currently under-utilized 

Adapted from Riedewald, Composite Recycling Ltd 
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Pyrolysis of waste tires yields a large amount of 

aromatic products 

Kusch, Pyrolysis-Gas Chromatography/Mass  Spectrometry of Polymeric Materials 

Multi-ring aromatics 

One-ring aromatics 
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Current efforts in the conversion of waste tires 

Waste tires 

Fuels 

Plastics 



http://www.businessandleadership.com/sustainability/item/33445-coca-cola-partners-with-bio 

Currently p-xylene is produced from crude oil 
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http://www.businessandleadership.com/sustainability/item/33445-coca-cola-partners-with-bio 

Tires could potentially be a new p-xylene source 
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MSW will become a new crude oil 
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Tikgroup.org 

Petroleum Municipal solid waste 

http://techalive.mtu.edu/meec/module15/MunicipalSolidWaste.htm 
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‘The Stone Age did not end because we ran out 

of stones; we transitioned to better solutions. The 

same opportunity lies before us with energy 

efficiency and clean energy’ 

-Steven Chu 


